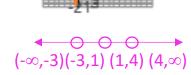

2.5 Polynomials Inequalities


Math 1610

THOMPSON

Graph the following polynomial function by hand. Then solve the eq

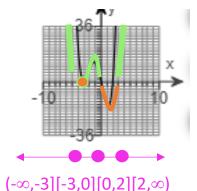
- (a) P(x) = 0 (b) P(x) < 0
- (c) P(x) > 0

(a) The solution set for P(x) = 0 is $\{-3,1,4\}$. (Use a comma to separate answers as needed.)

(b) The solution set for P(x) < 0 is $(-\infty, -3) \cup (1, 4)$.

(Type your answer in interval notation.) *since it is <, **below** but not on the x-axis – use parenthesis

(c) The solution set for P(x) > 0 is $(-3,1)U(4,\infty)$.


(Type your answer in interval notation.)

*since it is >, **above** but not on the x-axis – use parenthesis

Graph the following polynomial function by hand. Then solve the equation and inequalities.

$$P(x) = x^4 + 4x^3 - 3x^2 - 18x$$

= $x(x-2)(x+3)^2$ crosses at 0,2 touches at -3

- (a) P(x) = 0 (b) $P(x) \ge 0$
- (c) $P(x) \le 0$

(a) The solution set for P(x) = 0 is $\{-3,0,2\}$. (Use a comma to separate answers as needed.)

(b) The solution set for $P(x) \ge 0$ is $(-\infty, 0] \cup [2, \infty)$ (Type your answer in interval notation.)

*since it is ≥, **above and on** x-axis use brackets

(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$. (Type your answer in interval notation.)

> *since it is \leq , **below and on** x-axis use brackets

Solve the inequality. Express your answer using set notation or interval notation. Graph the solution set.

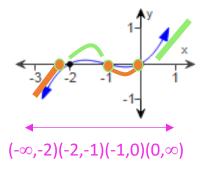
$$17 - 3x \ge -1$$

Choose the correct answer below that is the solution set to the inequality.

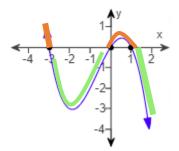
 $^{\bullet}$ A. {x|x ≤ 6} or ($-\infty$,6]

 $-3x \ge -18$

○ B. $\{x | x \le -6\}$ or $(-6, \infty)$

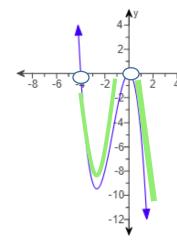

 $x \leq 6$ *change direction dividing by -3

○ C. $\{x | x \le -18\}$ or $(-18, \infty)$


D. {x|x≥6} or [-∞,6)

- 4a) Use the graph of the function f to solve the inequality.
 - (a) f(x) > 0
 - **(b)** $f(x) \le 0$

- a) *since it is >, **above** and not on the x-axis use parenthesis $(-2,-1)\cup(0,\infty)$
- b) *since it is \leq , below and on x-axis use brackets (- ∞ ,-2] \cup [-1,0]
- 4b) Use the graph of the function f to solve the inequality.
 - (a) f(x) < 0 (-3,0) \cup (1, ∞)
 - **(b)** $f(x) \ge 0$ $(-\infty, -3] \cup [1,1]$

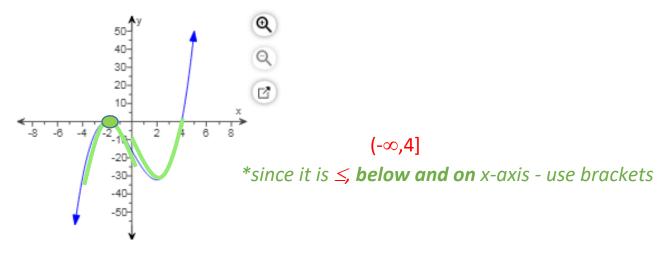

a) since it is <,

below but not on the x-axis- use parenthesis

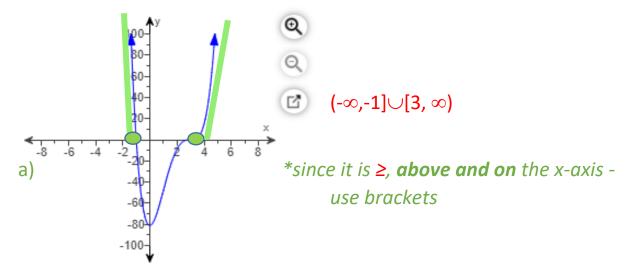
b) *since it is ≥,

on and above and on the x-axis - use brackets

Solve the inequality f(x) < 0, where $f(x) = -x^2(x+4)$, by using the graph of the function.


Q

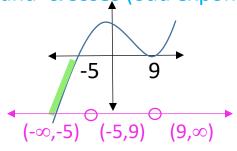
Q


 $(-4,0)U(0,\infty)$

*since it is <, below but not on the x-axis – use parenthesis

6) Solve the inequality $f(x) \le 0$, where $f(x) = (x - 4)(x + 2)^2$, by using the graph of the function.

7) Solve the inequality $f(x) \ge 0$, where $f(x) = 3(x+1)(x-3)^3$, by using the graph of the function.


8) Solve the inequality algebraically.

$$(x-9)^2(x+5) < 0$$
 Intercepts are -5 and 9 forms 3 **intervals** with open circles

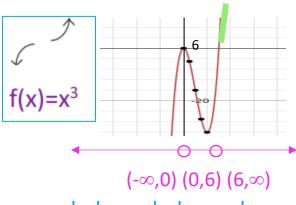
$$(-\infty, -5)$$
 $(-5,9)$ $(9,\infty)$

* make a graph of x³ that **touches** (even exponent) at 9

$$\int f(x)=x^3$$

below above above

List the intervals and sign in each interval. Complete the following table. (Type your answers in interval notation. Use ascending order.)

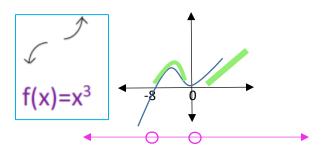

Interval		$(-\infty, -5)$	(-5,9)	(9,∞)
Sign		Negative	Positive	Positive
below		above	above	

since it is < 0 from the original problem: below but not on the x-axis – use parenthesis

9) Solve the inequality $x^3-6x^2 > 0$ factor first $x^2(x-6) > 0$

Intercepts are 0 and 6 forms 3 intervals with open circles

* make a graph of x³ that **touches** (even exponent) at 0 and **crosses** (odd exponent) at 6



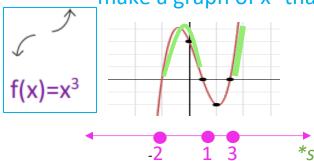
below below above

since it is >, **above** and not on the x-axis – use parenthesis $(6,\infty)$

10) Solve the inequality
$$3x^3 > -24x^2$$
 $3x^3 + 24x^2 > 0$ factor first $3x^2(x+8) > 0$ x-intercepts are 0 and -8

* make a graph of x³ that **touches** (even exponent) at 0 and **crosses** (odd exponent) at -8

 $(-\infty,0)$ (0,6) $(6,\infty)$ below above above


since it is >, **above** and not on the x-axis – use parenthesis

Interval	$(-\infty, -8)$	(-8,0)	(0,∞)
Sign	Negative	Positive	Positive

(-8,0) ∪ (0,∞)

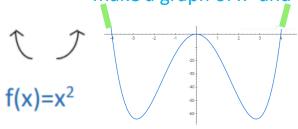
11) Solve the inequality $(x-3)(x-1)(x+2) \ge 0$ x-intercepts are 3, 1, and -2

* make a graph of x^3 that **crosses** (odd exponent) at -2, 1, 3

*since it is ≥, **above and on** the x-axis - use brackets

 $(-\infty, -2)$ (-2, 1) (1, 3) $(3, \infty)$

[-2, 1]∪[3, ∞)

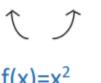

12) Solve the inequality $x^4>16x^2$ solve first then factor

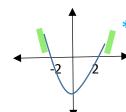
$$x^4-16x^2 > 0$$

$$x^2(x^2-16)>0$$

$$x^2(x+4)(x-4)>0$$
 x-intercepts are -4, 0 and 4

*make a graph of x⁴ and touches at 0 crosses at -4 and 4


since it is >, **above** and not on the x-axis – use parenthesis


13) Solve the inequality $x^4>16$ solve first then factor

$$x^4-16>0$$

$$(x^2-4)(x^2+4)>0$$

$$(x-2)(x+2)(x^2+4)>0$$
 x-intercepts are -2, 2

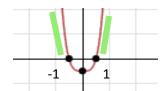
*make a graph of x⁴ and crosses at -2 and 2

since it is >, **above** and not on the x-axis – use parenthesis

 $(-\infty,-2)\cup(2,\infty)$

FRACTIONAL INEQUALITIES MAKE A NUMBER LINE

 \geq means


> means

all values on bottom are

14) Solve the inequality
$$\sqrt{x^4 - 1}$$
 square root means $x \ge 0$

$$(x^2-1)(x^2+1) \ge 0$$

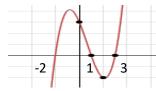
 $(x-1)(x+1)(x^2+1) \ge 0$

We are looking for **above** and on the x-axis since it is ≥ 0

15) Solve the quadratic inequality. Give the solution set in interval notation.

$$(x+8)^2 \le 0$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

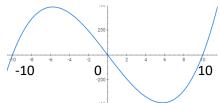

The solution set is the single point \(\big(-8 \) \).

(Type an integer or a simplified fraction.)

EXTRA EXAMPLES:

a) Solve the inequality (x-3)(x-1)(x+2) > 0

*easiest to look at the graph of
$$x^3$$
 and crosses at -2, 1, 3


We are looking for above the x-axis since it is > 0

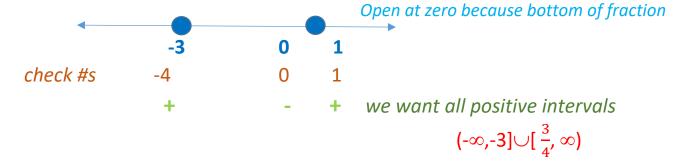
$$(-2, 1) \cup (3, \infty)$$

b) Solve the inequality $x^3-100x \le 0$

$$x(x^2-100) \le 0$$

 $x(x-10)(x+10) \le 0$

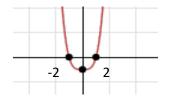
*easiest to look at the graph of x³ and crosses at -10, 0, 10



We are looking for below and include the x-axis since it is < 0

c) Solve the inequality $9x - 9 \ge -4x^2$

$$4x^2 + 9x - 9 \ge 0$$
 use slide and divide $x^2 + 9x - 36$ $(x + 12)(x - 3)$ divide by $4x = -3, \frac{3}{4}$

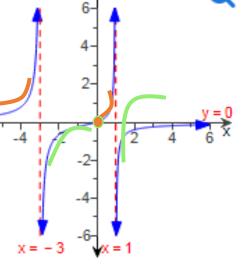

*we check all the critical points on a number line $x = 3, -\frac{3}{4}$

d) Solve the inequality
$$\sqrt{x^4 - 16}$$
 square root means $x \ge 0$


$$(x^2-4)(x^2+4)$$

 $(x-2)(x+2)(x^2+1)$

*easiest to look at the graph of x⁴ and crosses at -2,2



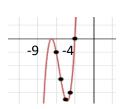
We are looking for above and include the x-axis since it is \geq 0

$$(-\infty,-2]\cup[,\infty)$$

- (a) f(x) < 0
- $(-3,0)\cup(1,\infty)$
- **(b)** $f(x) \ge 0$
- $(-\infty, -3) \cup [0, 1)$
- a) *since it is <, below the x-axis and parenthesis
- b) *since it is \geq , on and above the x-axis and brackets⁶

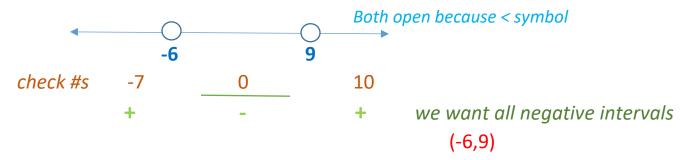
f) Solve the inequality $\sqrt{\frac{x-10}{x+6}}$

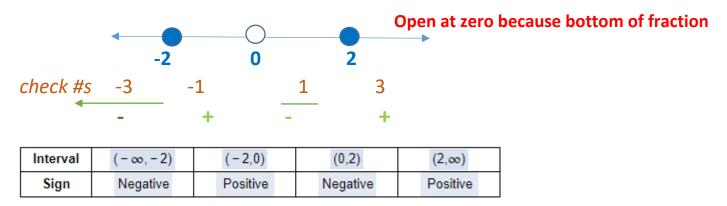
square root means $x \ge 0$ but bottom cannot = 0 so bottom x > 0 and top $x \ge 0$ *we check all the critical points on a number line x = -6, 10


check #s -7 0 11 + we want all positive intervals
$$(-\infty, -6) \cup [10, \infty)$$

g) Solve the inequality
$$\frac{(x-4)(x+4)}{x} \ge 0$$

*we check all the critical points on a number line x = -4, 0, 4

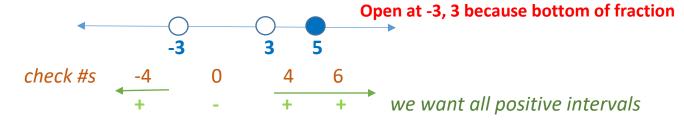

- h) Solve the inequality $(x+9)^2(x+4) < 0$ x-intercepts are -9 and -4
 - *easiest to make a graph of x³ that touches at -9 crosses at -4


We are looking for below the x-axis since it is < 0

$$(-\infty, -9) \cup (-9, -4)$$

- j) Solve the inequality $\frac{x+6}{x-9} < 0$ open circles from <
 - *we check all the critical points on a number line x = -6, 9

- k) Solve the inequality $\frac{(x-2)(x+2)}{x} \le 0$ closed circles from \le
 - *we check all the critical points on a number line x = -2, 0, 2



we include the points and use negative intervals

$$(-\infty, -2] \cup (0, 2]$$

I) Solve the inequality
$$\frac{(x-5)^2}{x^2-9} \ge 0$$
 closed circles from \ge

*we check all the critical points on a number line x = -3, 3, 5

since 5 is solid and already included we don't need to make a new interval $(-\infty, -3) \cup (3, \infty)$

n) Solve the inequality
$$\sqrt{\frac{x-8}{x+4}}$$

square root is $x \ge 0 \rightarrow$ bottom cannot = 0; Open at -4 because bottom of fraction *we check all the critical points on a number line x = -4, 8

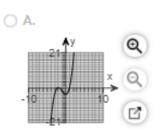
check #s -5 0 9 + we want all positive intervals
$$(-\infty, -4) \cup [8, \infty)$$

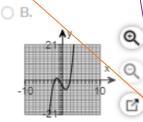
m) Solve the inequality
$$\frac{x^2(9+x)(x-9)}{(x+2)(x-5)} \ge 0$$
 closed circles from \ge

*we check all the critical points on a number line x = -9, -2, 0, 5, 9

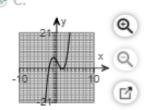
since 5 is open we have to make a new interval since it is NOT included

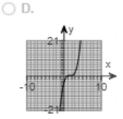
$$(-\infty, -9] \cup (-2, 5) \cup [9, \infty)$$


I) Graph the following polynomial function by hand. Then solve the equation and inequalities.

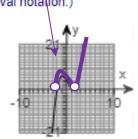

$$P(x) = x^3 - 1x^2 - 4x + 4$$

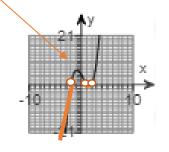
= (x - 2)(x - 1)(x + 2)


- (a) P(x) = 0 (b) P(x) < 0
- (c) P(x) > 0



open circles < open circles >

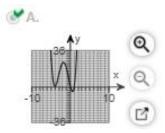


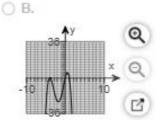


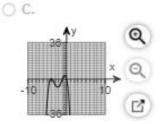
- (a) The solution set for P(x) = 0 is $\{-2,1,2\}$. (Use a comma to separate answers as needed.)
- Switch the signs (x-2)(x-1)(x+2)
- (b) The solution set for P(x) < 0 is $(-\infty, -2) \cup (1, 2)$ graph is BELOW the x-axis NOT including zero (Type your answer in interval notation.)
- (c) The solution set for P(x) > 0 is $(-2,1)\cup(2,\infty)$.

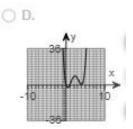
(Type your answer in interval notation.)

Where the graph is ABOVE the x-axis NOT including zero

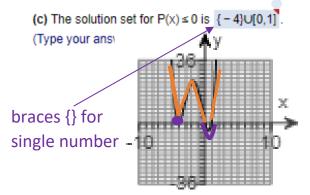



m) Graph the following polynomial function by hand. Then solve the equation and inequalities.


$$P(x) = x^{4} + 7x^{3} + 8x^{2} - 16x$$
$$= x(x - 1)(x + 4)^{2}$$


- (a) P(x) = 0 (b) $P(x) \ge 0$
- (c) $P(x) \le 0$

closed circles ≥ closed circles ≤



(a) The solution set for P(x) = 0 is $\{-4,0,1\}$. Switch the signs $x(x-1)(x+4)^2$ single x = 0 graph is ABOVE the x-axis including zero

(b) The solution set for $P(x) \ge 0$ is $(-\infty,0] \cup [1,\infty)$. (Type your answer in interval notation.)

graph is BELOW the x-axis including zero including the point x = 4